134,843 research outputs found

    Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments

    Get PDF
    Copyright @ Springer-Verlag 2010.In estimation of distribution algorithms (EDAs), the joint probability distribution of high-performance solutions is presented by a probability model. This means that the priority search areas of the solution space are characterized by the probability model. From this point of view, an environment identification-based memory management scheme (EI-MMS) is proposed to adapt binary-coded EDAs to solve dynamic optimization problems (DOPs). Within this scheme, the probability models that characterize the search space of the changing environment are stored and retrieved to adapt EDAs according to environmental changes. A diversity loss correction scheme and a boundary correction scheme are combined to counteract the diversity loss during the static evolutionary process of each environment. Experimental results show the validity of the EI-MMS and indicate that the EI-MMS can be applied to any binary-coded EDAs. In comparison with three state-of-the-art algorithms, the univariate marginal distribution algorithm (UMDA) using the EI-MMS performs better when solving three decomposable DOPs. In order to understand the EI-MMS more deeply, the sensitivity analysis of parameters is also carried out in this paper.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant 60774064, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    Population-based incremental learning with associative memory for dynamic environments

    Get PDF
    Copyright © 2007 IEEE. Reprinted from IEEE Transactions on Evolutionary Computation. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In recent years there has been a growing interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) due to its importance in real world applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of EAs, for DOPss. A PBIL-specific associative memory scheme, which stores best solutions as well as corresponding environmental information in the memory, is investigated to improve its adaptability in dynamic environments. In this paper, the interactions between the memory scheme and random immigrants, multi-population, and restart schemes for PBILs in dynamic environments are investigated. In order to better test the performance of memory schemes for PBILs and other EAs in dynamic environments, this paper also proposes a dynamic environment generator that can systematically generate dynamic environments of different difficulty with respect to memory schemes. Using this generator a series of dynamic environments are generated and experiments are carried out to compare the performance of investigated algorithms. The experimental results show that the proposed memory scheme is efficient for PBILs in dynamic environments and also indicate that different interactions exist between the memory scheme and random immigrants, multi-population schemes for PBILs in different dynamic environments

    Experimental study on population-based incremental learning algorithms for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2005.Evolutionary algorithms have been widely used for stationary optimization problems. However, the environments of real world problems are often dynamic. This seriously challenges traditional evolutionary algorithms. In this paper, the application of population-based incremental learning (PBIL) algorithms, a class of evolutionary algorithms, for dynamic problems is investigated. Inspired by the complementarity mechanism in nature a Dual PBIL is proposed, which operates on two probability vectors that are dual to each other with respect to the central point in the genotype space. A diversity maintaining technique of combining the central probability vector into PBIL is also proposed to improve PBILs adaptability in dynamic environments. In this paper, a new dynamic problem generator that can create required dynamics from any binary-encoded stationary problem is also formalized. Using this generator, a series of dynamic problems were systematically constructed from several benchmark stationary problems and an experimental study was carried out to compare the performance of several PBIL algorithms and two variants of standard genetic algorithm. Based on the experimental results, we carried out algorithm performance analysis regarding the weakness and strength of studied PBIL algorithms and identified several potential improvements to PBIL for dynamic optimization problems.This work was was supported by UK EPSRC under Grant GR/S79718/01

    Dual population-based incremental learning for problem optimization in dynamic environments

    Get PDF
    Copyright @ 2003 Asia Pacific Symposium on Intelligent and Evolutionary SystemsIn recent years there is a growing interest in the research of evolutionary algorithms for dynamic optimization problems since real world problems are usually dynamic, which presents serious challenges to traditional evolutionary algorithms. In this paper, we investigate the application of Population-Based Incremental Learning (PBIL) algorithms, a class of evolutionary algorithms, for problem optimization under dynamic environments. Inspired by the complementarity mechanism in nature, we propose a Dual PBIL that operates on two probability vectors that are dual to each other with respect to the central point in the search space. Using a dynamic problem generating technique we generate a series of dynamic knapsack problems from a randomly generated stationary knapsack problem and carry out experimental study comparing the performance of investigated PBILs and one traditional genetic algorithm. Experimental results show that the introduction of dualism into PBIL improves its adaptability under dynamic environments, especially when the environment is subject to significant changes in the sense of genotype space

    Double-layer Perfect Metamaterial Absorber and Its Application for RCS Reduction of Antenna

    Get PDF
    To reduce the radar cross section (RCS) of a circularly polarized (CP) tilted beam antenna, a double-layer perfect metamaterial absorber (DLPMA) in the microwave frequency is proposed. The DLPMA exhibits a wider band by reducing the distance between the three absorption peaks. Absorbing characteristics are analyzed and the experimental results demonstrate that the proposed absorber works well from 5.95 GHz to 6.86 GHz (relative bandwidth 14.1%) with the thickness of 0.5 mm. Then, the main part of perfect electric conductor ground plane of the CP tilted beam antenna is covered by the DLPMA. Simu¬lated and experimental results reveal that the novel antenna performs well from 5.5 GHz to 7 GHz, and its monostatic RCS is reduced significantly from 5.8 GHz to 7 GHz. The agreement between measured and simulated data validates the present design

    An Online Approach to Dynamic Channel Access and Transmission Scheduling

    Full text link
    Making judicious channel access and transmission scheduling decisions is essential for improving performance as well as energy and spectral efficiency in multichannel wireless systems. This problem has been a subject of extensive study in the past decade, and the resulting dynamic and opportunistic channel access schemes can bring potentially significant improvement over traditional schemes. However, a common and severe limitation of these dynamic schemes is that they almost always require some form of a priori knowledge of the channel statistics. A natural remedy is a learning framework, which has also been extensively studied in the same context, but a typical learning algorithm in this literature seeks only the best static policy, with performance measured by weak regret, rather than learning a good dynamic channel access policy. There is thus a clear disconnect between what an optimal channel access policy can achieve with known channel statistics that actively exploits temporal, spatial and spectral diversity, and what a typical existing learning algorithm aims for, which is the static use of a single channel devoid of diversity gain. In this paper we bridge this gap by designing learning algorithms that track known optimal or sub-optimal dynamic channel access and transmission scheduling policies, thereby yielding performance measured by a form of strong regret, the accumulated difference between the reward returned by an optimal solution when a priori information is available and that by our online algorithm. We do so in the context of two specific algorithms that appeared in [1] and [2], respectively, the former for a multiuser single-channel setting and the latter for a single-user multichannel setting. In both cases we show that our algorithms achieve sub-linear regret uniform in time and outperforms the standard weak-regret learning algorithms.Comment: 10 pages, to appear in MobiHoc 201
    corecore